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Abstract--A numerical study of natural convection in a two-dimensional container of unity aspect ratio 
with unstable temperature distributions on the side walls and adiabatic top and bottom walls is discussed 
for a Boussinesq fluid with unity Prandtl number. For sufficiently low Rayleigh numbers and symmetric 
boundary conditions a unique 2 x 2 steady cellular flow with horizontal and vertical symmetry exists. At a 
critical Rayleigh number a pitchfork bifurcation occurs creating a pair of asymmetric steady solutions. 
Further increasing the Rayleigh number causes the asymmetric pair of steady solutions to undergo a 
subcritical Hopf bifurcation resulting in a large amplitude limit cycle. Hysteresis behavior is observed 
between the stable steady flows and the stable limit cycle for a range of Rayleigh numbers. The limit cycle 
disappears at a minimum Rayleigh number in what appears to be a double homoclinic orbit. Applying 
asymmetric temperature boundary conditions causes an unfolding of the pitchfork bifurcation. The charac- 
ter of the Hopf bifurcations and resulting limit cycle behavior is deeply affected by the introduction of 
asymmetry. As the Rayleigh number is increased a progression of limit cycles containing from two to 206 
small amplitude oscillations and one large amplitude 'relaxation' oscillation per period are separated by 
what may be a series of homoclinic orbits. The steady and limit cycle solution structure has a large influence 

on the heat transfer rate through the container. © 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Natural convection in an enclosed container has 
received a great deal of attention by the research com- 
munity due to its importance in many engineering 
devices. A particularly important application is the 
cooling of electronic components in computers. Much 
of the research has concentrated on the Rayleigh- 
Bernard problem where the bottom surface of the 
container is held at a relatively hot temperature, the 
top surface of the container is held at a relatively cold 
temperature while the side walls are adiabatic. As the 
Rayleigh number is increased the flow has been shown 
to undergo transitions from a state of pure conduction 
to steady cellular flows, periodic flows, quasi-periodic 
flows, chaotic flows and ultimately turbulent flow. 

Gollub and Benson [1] present experimental results 
while Curry et al. [2] provide numerical results for 
two- and three-dimensional computations. Various 
types of instabilities and fluid motions have been 
found experimentally for Rayleigh-Bernard con- 
vection in Hele-Shaw cells [3--6], where the flow is 
approximately two-dimensional. Steen and co- 
workers [7-9] have numerically studied these flows, 
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applying continuation techniques to map the steady 
and oscillatory solutions in parameter space. 

A variant of the classic Rayleigh-Bernard problem 
is obtained by rotating the container 90 ° . Then one 
side wall is at a relatively hot temperature, the other 
side wall is at a relatively cold temperature and the 
top and bottom of the container are adiabatic. There 
is no state of pure conduction in this case as a cellular 
flow develops for any nonzero Rayleigb number. Sev- 
eral types of solutions have been characterized for this 
flow including steady cellular flows, limit cycles, quasi- 
period flows, chaos and turbulence [10-12]. The effect 
of varying inclination angle has also been examined 
for the Rayleigh-Bernard problem [13]. 

A related class of flows that has received relatively 
little attention is that of convection in an enclosed 
container where unstable temperature distributions 
are imposed on the side walls while the top and bottom 
walls are adiabatic [14]. In this class of flows steady 
multi-cellular convection occurs at low Rayleigh num- 
ber due to the temperature distributions on the side 
walls ; relatively hot regions of the side walls lead to 
locally upwelling flows while relatively cold regions 
lead to locally downwelling flows. Thus, depending on 
the aspect ratio of the container and the temperature 
distribution on the side walls any number of cells can 
be produced. 

In this work we consider the case where the upper 
half of the side walls are relatively cold while the lower 
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half of the side walls are relatively hot leading to a 
2 x 2 steady cellular flow at low Rayleigh numbers. 
The solution structure of this flow as a function of 
Rayleigh number is studied numerically through the 
calculation of steady and limit cycle solutions. For 
symmetric boundary conditions the solution structure 
in some ways resembles that found for the Rayleigh- 
Bernard problem in a Hele-Shaw cell [9]. New results 
are obtained when the symmetry of the flow is broken 
by imposing asymmetric boundary conditions. Limit 
cycle behavior not previously seen in natural con- 
vection during which the flow undergoes any number 
of small amplitude oscillations and one large 'relax- 
ation' oscillation per period is found. 

These new limit cycles are symbolically represented 
as S~L" where S represents a small amplitude oscil- 
lation, L represents a large amplitude oscillation, m 
represents the number of small amplitude oscillations, 
and n the number of large amplitude oscillations per 
period of the limit cycle. A cascade of SmL" type limit 
cycles where 2 <~ m <~ 206 and n = I is obtained. Limit 
cycles of the form (S3LI)i(SeLI) ~ are found to occur in 
a transition region between SSL t and SZL t type limit 
cycles. This behavior is related to the existence of 
multiple unstable steady solutions. The average heat 
transfer rate through the container is shown to 
decrease as the flow undergoes transition from stable 
steady convection to oscillatory convection. 

2. EQUATIONS OF FLUID MOTION AND 
NUMERICAL APPROACH 

For the results presented here the flow is assumed 
to be two dimensional. Additionally the Boussinesq 
approximation is applied to the fluid such that density 
variations are linearly related to temperature vari- 
ations, 

p = p0[l --uo(T-- To)] 

where p is the density, T the temperature, and ~ the 
coefficient of thermal expansion. The subscript '0' 
denotes the mean state of the fluid. Then the con- 
tinuity equation may be written as 

Ou Ow 
Ox+~ =o 

the momentum equation as 

Du 1 8P  
- + vVZu 

D t  Po Ox 

D w  1 OP 
Dt  Po Oz ~ ° g ( T - - T ° ) + v V Z w  

and the energy equation neglecting frictional heating 
as 

where 

D T  
- -  = xV 2 T (5) 
D t  

D 0 [ 0 

82 02 
V 2 - _ _  + -  

- Ox 2 Oz 2 

and u and w represent the velocity components in the 
horizontal, x, and vertical, z, directions, P represents 
the pressure, v represents kinematic viscosity, and x 
represents thermal diffusivity. 

Since the flow is incompressible as regards the con- 
tinuity equation, one can introduce the stream func- 
tion, ~, defined such that 

aq, aqJ 
U=~z, w = - a x  

which automatically satisfies the continuity equation. 
The pressure can be eliminated from the momentum 
equation by combining equation (3) and equation (4) 
to obtain an equation for the time evolution of the 
spanwise component of vorticity 

Dr/ 
- R a P r a ~  0 + Pr V2r/ (6) 

Dt  G X  

where 

Ow Ou 

~l = Ox 8z 

and 0 represents the normalized temperature 
( T - T O / A T ,  where AT is the difference between the 
maximum and minimum temperatures at the bound- 
ary of the container. Equation (6) has been non- 
dimensionalized using the width of the container, L, 
as the length scale and the thermal diffusion time scale, 
L2/K, so the Rayleigh and Prandtl numbers are defined 

(1) as 

Ra = g~ATL3  Pr v 
K ~  K 

The nondimensional form of the energy equation is 

DO 
- -  = V20 (7) 

(2) Ot  

and the spanwise vorticity can be defined in terms of 
the stream function as 

q = vN,. (8) 
(3) 

Equations (6)-(8) can then be solved for q, 0, and ~k. 
No slip and no penetration boundary conditions 

are imposed on all walls of the container. No pen- 
(4) etration is satisfied by defining the stream function to 

be zero on all bounding surfaces and no slip is imposed 
through a finite difference approximation to equation 
(8). Constant temperature distributions are specified 
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along the side walls of the container, while adiabatic 
conditions are imposed on the top and bottom walls 
of the container. The boundary conditions are then 

(a) 0 ~ < x ~ l ,  z = 0 :  

a0 a~ 
~0=0. ~=0 .  ~=az ~ ~=° 

(b) x = 0 ,  O<~z<~H: 

= 0, 0 = 0o(Z),  ~ = a x  2 ~ = o  

(c) 0~<x~<l ,  z = H :  

a0 a~  
q,=0. ~=o ,  ,=az  ~ ~ o  

(d) x =  1, O<,z<~H: 

=0, O=O,(z), r t = a x  2 ~=o 

where Oo(z ) and 01(z) are specified normalized tem- 
perature distributions. For the present work H = 1 
where H is the aspect ratio of the container, defined 
as the height divided by the width. 

Two numerical techniques were applied in the pre- 
sent work. Steady solutions were obtained as a func- 
tion of Rayleigh number by applying a continuation 
technique to equations (6)-(8). To perform the con- 
tinuation calculation the steady versions of equations 
(6)-(8) were discretized with second-order central 
differences. The boundary conditions were discretized 
with second-order one-sided differences where 
required. A pseudo arc-length continuation technique 
based on the work of Doedel and Kernevez [15] was 
then applied to the system of 3NM algebraic equations 
for the discretized approximations to r/, 0, and ~, 
where N represents the number of grid points in the 
x-direction and M represents the number of grid 
points in the z-direction. A steady state was deter- 
mined to have been reached when both (i) the residual 
of the discretized forms of equations (6)-(8) and the 
boundary conditions was less than 10 -5 at each grid 
point; and (ii) the maximum relative change of the 
variables in an iterate at any grid point was less than 
10 -s. 

The second computational technique solved the 
initial value problem posed by equations (6)-(8). The 
temporal evolution of r/and 0 was computed by apply- 
ing the ETUDE scheme [ 16] which is a finite difference 
approximation that is first order in time and nearly 
second order in space. The Poisson equation, equation 
(8), was discretized by second-order central differ- 
ences and solved by successive overrelaxation at each 
time step for ~9. Numerical accuracy was assured by 
comparing calculations on uniformly spaced 41 x 41, 
61 × 61, and 81 x 81 grids for both numerical methods. 
Similar results were obtained for all grid sizes. All 

calculations presented here were performed on an 
81 x 81 uniformly spaced grid and the Prandtl number 
was equal to 1.0. 

3. RESULTS 

Temperature boundary conditions on the side walls 
for both the symmetric and asymmetric cases are 
shown in Fig. 1. A constant temperature hot wall region 
in the bottom half of the container is piece-wise 
linearly connected to a constant temperature cold wall 
region in the upper half of the container. The linear 
variation in wall temperature near the half height of 
the container was used so the boundary condition 
could be exactly discretized by all computational grids 
used in this work. Thus, the boundary condition 
approximates a discontinuity in temperature but 
avoids the problem that if one has the temperature 
change occur over only one grid box, then the bound- 
ary condition changes as the grid size is varied making 
it difficult to accurately compare solutions for different 
grid resolutions. A small region of linear variation is 
also a more appropriate model for the temperature 
distribution in a physical device. 

Note that the asymmetric boundary condition is 
only slightly asymmetric, something one might obtain 
in a carefully built physical device, A certain amount 
of symmetry is maintained in the asymmetric bound- 
ary conditions by reducing the hot region on one side 
wall and the cold region on the opposite side wall 
equal amounts. Thus, the boundary conditions main- 
tain a diagonal anti-symmetry which will be evident 
in most flows. 

3.1. Symmetric boundary condition 
A summary of the steady and limit cycle solutions 

for the case with symmetric boundary conditions is 

1.0 

0.5 

0.O 

b c 

I 
0 

Fig. 1. Temperature boundary conditions on container side 
walls for (a) symmetric case, x = 0, x = 1 ; (b) asymmetric 

case, x = 0 ; (c) asymmetric case, x = 1. 
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Fig. 2. Bifurcation diagram for symmetric case. Full lines, 
stable steady solutions; dashed lines, unstable steady sol- 
utions; ~-maximum and minimum values in stable limit 

cycles. 

shown in the bifurcation diagram of Fig. 2. Steady 
solutions are represented by the value of the stream 
function at (x, z) = (0.25, 0.50) while limit cycle sol- 
utions are represented by the maximum and minimum 
values of ~(0.25, 0.50) in the limit cycle. This variable 
was chosen so as to present the clearest picture of the 
results, but any other discretized variable could have 
been chosen. 

As can be seen in Fig. 2, a unique stable steady flow 
exists for sufficiently small Rayleigh numbers This 
solution branch will be called the primary solution 
branch and is labeled P in the figure. Solutions on 
the primary branch represent 2 x 2 cellular flows with 
both vertical and horizontal symmetry about the mid- 
dle of the enclosure and symmetry about the diagonals 
of the enclosure. Figure 3 shows a sample of stream- 
line and temperature contours for a solution on the 
primary branch. 

At a critical Rayleigh number near 7915 a pitchfork 
bifurcation causes the primary branch to become 
unstable and leads to the emergence of a pair of anti- 
symmetric solutions on a secondary solution branch, 
labeled S in Fig. 2. Pitchfork bifurcations occur in 
systems with symmetry and result in new solutions 
with less symmetry than the original solution. Indeed 
solutions on the secondary branch do not contain 

horizontal or vertical symmetry, but the diagonal sym- 
metry is retained. A sample solution on the secondary 
solution branch is presented in Fig. 4. The secondary 
branch is characterized by a three cell flow with one 
large diagonal cell and two smaller corner cells. If 
the solution along the secondary branch is monitored 
from the pitchfork bifurcation to larger Rayleigh 
numbers one sees a gradual merging of two cells along 
either one of the diagonals (giving the pair of solu- 
tions) until a large diagonal cell occurs as shown in 
Fig. 4. 

Secondary solutions are more efficient than primary 
solutions at transporting heat through the enclosure 
as shown in Fig. 5 where the heat transfer through the 
cell, represented by the Nusselt number, is plotted 
as a function of Rayleigh number. Heat enters the 
enclosure through the hot portions of the side walls 
and exits through the cold portions of the side walls. 
Thus, to enhance heat transfer more hot fluid must be 
brought near the cold wall and vice versa. Primary 
solutions have no means of bringing hot fluid near the 
cold walls by convection, so heat must be conducted 
from a hot cell to a cold cell and then to the cold wall. 
The large diagonal cell characteristic of secondary 
solutions brings hot fluid directly to the cold wall by 
convection thus improving heat transfer. 

As the Rayleigh number is further increased the 
secondary solutions lose stability in what appears to 
be a subcritical Hopf bifurcation near Ra  = 180000. 
For R a  just past the instability, the flow transitions to 
a large amplitude limit cycle as indicated in Fig. 2. 
Hysteresis behavior is also evident as stable limit 
cycles and stable steady flows co-exist for 
170 000 < Ra  < 180 000.  

Figure 6 shows a two-dimensional projection of the 
phase portrait of the limit cycle for several values of 
Rayleigh number. The flow oscillates around the three 
steady solutions, going from one diagonal cell to the 
other, passing near the primary solution representing 
the 2 × 2 cellular array along the way. A sequence of 
contour plots in the limit cycle for R a  = 170 000 is 
shown in Fig. 7. As the Rayleigh number is decreased 
the limit cycle passes closer to the steady primary 
solution as shown in Fig. 6. Since the flow changes 
more slowly near a steady solution a disproportionate 
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Fig. 3. Contour plots of steady flow on primary solution branch for symmetric case with Ra = 54 365. (a) 
Streamlines ; (b) temperature. Full lines, positive contour levels ; dashed lines, negative contour levels. 
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Fig. 4. Contour plots of steady flow on secondary solution branch for symmetric case with Ra = 54 705. 
(a) Streamlines ; (b) temperature. Full lines, positive contour levels ; dashed lines, negative contour levels. 
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Fig. 5. Time average heat transfer through enclosure for 
steady and limit cycle solutions as a function of Rayleigh 
number for symmetric case. Full lines, stable steady solu- 
tions ; dashed lines, unstable steady solutions ; o--stable limit 

cycles. 
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Fig. 6. Projection of phase portrait of limit cycle for sym- 
metric case. Times correspond to contour plots in Fig. 7. 
Full line, Ra = 170000; dashed line, Ra = 190000; S--sec- 

ondary steady solution ; P--primary steady solution. 

amount  of  the limit cycle is spent near the primary 
steady solution. This is evident in Fig. 6 as equal time 
increments are noted on the limit cycle for 
Ra = 170 000. This effect is also evident in the period 
of  the limit cycle which increases as the Rayleigh num- 
ber is decreased as shown in Fig. 8. This gives the 
appearance of  the limit cycle disappearing at a critical 

Rayleigh number in a homoclinic bifurcation, but  this 
has not  been proven. Qualitatively similar behavior is 
seen by Hu  and Steen [9] for the Rayleigh-Bernard 
problem in a Hele-Shaw cell. 

Since more time in the limit cycle is spent near the 
primary than the secondary solution, the mean heat 
transfer through the enclosure is less for the limit cycle 
solution than for the steady secondary solution as 
shown in Fig. 5. Indeed the heat transfer rate in the 
limit cycle is between the heat  transfer rate of  the 
primary and secondary solutions as the limit cycle 
contains remnants of  both solutions. Thus, the insta- 
bility of  the secondary solution near Ra = 180 000 
leads to a new stable fluid flow with a reduced heat 
transfer rate. 

3.2. Asymmetric boundary condition 
Any physical device will have some degree of  asym- 

metry, so it is natural to ask whether the results for 
symmetric boundary conditions have any relevance to 
a physical situation. Will a slight asymmetry lead to 
minor differences from the symmetric flow or will the 
asymmetric case be qualitatively different? Benjamin 
[17] has shown that finite aspect ratio Taylor-Couet te  
flow, which is always the case in physical devices, can 
be quite different from the infinite aspect ratio case 
that is often treated numerically. Fo r  infinite aspect 
ratio Taylor-Couet te  flow, a state of  purely azimuthal 
flow exists for low Rayleigh numbers which becomes 
unstable at a pitchfork bifurcation leading to cellular 
flows. End walls cause the unfolding of  the pitchfork 
bifurcation resulting in cellular flows at any Rayleigh 
number. 

Since the current problem contains a pitchfork 
bifurcation for symmetric boundary conditions, we 
expect an unfolding of  the pitchfork bifurcation if 
any asymmetry is introduced. Asymmetry is provided 
through the temperature boundary conditions on the 
side walls as shown in Fig. 1. Note  that the asymmetry 
is minimal, but it has a large effect on the solution 
structure of  the flow as illustrated by the bifurcation 
diagram in Fig. 9. The pitchfork bifurcation is indeed 
unfolded leading to a primary steady solution branch, 
P, that exists for all values of  Ra and a pair of  steady 
solutions, SP and SS, that arise at a saddle-node bifur- 
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Fig. 7. Contour plots in the limit cycle for symmetric case with Ra = 170000. (a) Streamlines; (b) 
temperature. Full lines, positive contour levels ; dashed lines, negative contour levels. 

cation near R a  = 12 990. Recall that for the symmetric 
case the pitchfork bifurcation occurred near 
R a  = 7915. An additional pair of  steady solutions, 
PB, arise at a pitchfork bifurcation on the primary 
branch near R a  = 286 135. This pitchfork bifurcation 
breaks the diagonal symmetry that exists for solutions 
on the primary branch. 

A sample contour plot of  the stream function on 
each steady solution branch is shown in Fig. 10. Asym- 
metry is introduced at the left side wall by reducing 

the region of  cold temperature while the region of  hot  
temperature at the right wall is reduced. This favors a 
flow with more upwelling fluid near the lower left wall 
and more downwelling fluid near the upper right wall 
as illustrated by the solution characteristic of  the pri- 
mary branch. Since this flow is favored by the bound- 
ary conditions, it remains stable to a higher Rayleigh 
number, R a  = 247000, than branch SS which loses 
stability near R a  = 136 000. Branch SP solutions are 
similar to the 2 × 2 cellular flow on the primary branch 
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Fig. 7--continued. 

for the symmetric case due to the small amount of 
asymmetry. Solutions on branch PB do not have the 
diagonal symmetry that solutions on branches P, SS, 
and SP contain. While solutions on branch PB are 
always unstable, and thus would not be seen to occur 
experimentally, the pitchfork bifurcation from which 
they arise breaks the diagonal symmetry and could 
influence the flow. Recall that the unstable steady 
solutions had a large effect on the limit cycle behavior 
for the symmetric case. 

Branch SS becomes unstable at Ra = 136000 due 

to what appears to be a subcritical Hopf bifurcation. 
Just past the critical Rayleigh number at which branch 
SS becomes unstable no stable limit cycle is found. 
For time simulations starting from an unstable steady 
solution on branch SS growing oscillations occur with 
the flow eventually transitioning to a stable steady 
solution on the primary solution branch. 

Stable limit cycles occur when the primary solution 
branch becomes unstable at a supercritical Hopf bifur- 
cation near Ra -- 247 000 (see Fig. 9). Small amplitude 
limit cycles that represent the flow oscillating about 
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the primary steady solution occur for 
247 000 ~< Ra  <~ 252 000. Between a Rayleigh number 
of 252 000 and 253 000 the small amplitude limit cycles 
lose stability in what may be a heteroclinic bifurcation. 
This conjecture is based on numerical simulations and 
examination of the resulting two dimensional pro- 
jections of phase space, so it is far from proven. What 
is observed is that for Ra = 252 000 a time simulation 
started at the primary steady solution shows that the 
flow very slowly approaches a small amplitude limit 
cycle. For Ra  = 253 000 the flow is initially attracted 
to a small amplitude limit cycle, but eventually spirals 
away and undergoes limit cycle behavior that com- 
bines both small and large amplitude oscillations. 

Regardless of the details of the instability of the 
small amplitude limit cycle the flow behavior for Ray- 
leigh numbers larger than 253 000 is quite different 
from that seen for smaller Rayleigh numbers and for 
the symmetric case. An example of this limit cycle 
behavior is presented in Fig. 11 for Ra = 292000 
through a two-dimensional projection of phase space 
and a time trace of the value of the stream function at 

one location in the flow. The time trace shows that a 
sequence of two small amplitude oscillations occurs 
for every large amplitude oscillation. This type of limit 
cycle has been seen in reaction-diffusion systems where 
it is related to the existence of a 'spiraling out' homo- 
clinic orbit of Sil'nikov type [18]. Limit cycles with 
combinations of small and large amplitude oscil- 
lations can be described symbolically as S"L",  where 
5" represents m small amplitude oscillations and L" 
represents n large amplitude 'relaxation' oscillations. 
Using this notation the limit cycle for Ra = 292 000 is 
of the type SZL I. 

As can be deduced from the phase plot of Fig. 11 
the flow is oscillating about the steady solutions P, SP 
and SS. Since the asymmetry of the problem favors 
a flow structure represented by the primary steady 
solution (i.e. this steady solution is least unstable) 
more time is spent in the vicinity of P. Just as in 
the symmetric case, the steady solutions (even though 
they are unstable) have a strong influence on the limit 
cycle behavior. Figure 12 presents a sequence of con- 
tour plots in the limit cycle at Ra = 292 000. The flow 
oscillates between cellular flows qualitatively similar 
to the steady flows P and SS (see Fig. 10). Note that 
the large diagonal cell evident in the streamline con- 
tour plots does not rotate in transitioning from one 
orientation to the next. There is a pinching off of the 
large cell and a reconnection of the two smaller cells 
in the process. 

A sequence of limit cycles of the form SmL" occurs 
for 253 000 ~< Ra  ~ 300 000, where 2 ~< m ~< 206 and 
n = 1. A summary of these solutions is given in Table 
1. The maximum number of small oscillations per 
limit cycle was found for Ra = 253 000. This is the 
value of Ra nearest to the value where the small ampli- 
tude limit cycle becomes unstable. Thus, the system is 
initially attracted toward the small amplitude limit 
cycle, but since the limit cycle is slightly unstable 
slowly growing oscillations occur until the system 
undergoes one large amplitude oscillation and repeats 
the cycle. The small amplitude oscillations grow 
slower if the small amplitude limit cycle is less unstable 
leading to more small oscillations per large amplitude 
oscillation. In the limit of the small amplitude limit 
cycle becoming neutrally stable an infinite number 
of small amplitude oscillations per large amplitude 
oscillation would occur leading to a limit cycle with 
infinite period. This trend is evident in Fig. 13 which 
shows the period of the limit cycles as a function of 
Rayleigh number. Note that the period of the limit 
cycle for Ra = 253 000 (T ~ 9.05) is off the scale of 
the plot. 

The period of the S ' L "  type limit cycle is a piecewise 
continuous function of Rayleigh number. Jumps in 
the period occur when the flow transitions from a SmL ~ 

to a S "+ 1L' limit cycle. This discontinuous transition 
explains the behavior of the maximum amplitude of 
the stream function in the limit cycle seen in Fig. 9. 
Insight into why the flow makes a sudden transition 
from a SmL ' to a S m+ ILl limit cycle can be obtained 
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by comparing phase plots for several different limit 
cycles. Figure 14 shows phase plots for the SSL ~ limit 
cycle at Ra = 270000 and the S4L ~ limit cycle at 
Ra = 270 500. The growing spirals in the phase plot 
represent the small amplitude oscillations while the 
large loop represents the large amplitude oscillation. 
Growing small amplitude oscillations can persist as 
long as they stay to the left of  the steady solution SP, 
once a spiral goes to the right of  S P a  large amplitude 
oscillation occurs. 

Now consider what happens as the Rayleigh num- 
ber is increased from 270000-270 500. The growth 
rate of  the spirals increases as the Rayleigh number 
increases, so in a given number of  oscillations the state 
of  the system gets closer to SP. At  a critical Rayleigh 
number between 270000 and 270500, the spiral's 
growth rate is large enough such that the fifth spiral 
goes to the right of  SP instead of  the left and tran- 
sitions to the S~L ~ limit cycle. A discontinuity arises 
as the flow must decide whether to go to the left or the 
right of  SP ; it has either four or five small amplitude 
oscillations per limit cycle. It is possible that a homo- 
clinic orbit exists at the critical Rayleigh number 
between a S~L ~ and Sm+~L~ limit cycle but this has not  
been proven. Proving that a homoclinic orbit exists is 
a formidable task for such a complicated problem. 

Attempting to resolve the transition between the 
S3L 1 and SZL ! limit cycles led to the discovery of  a 
sequence of  limit cycles of  the form (S3LI)i(S2L 1) 
where i varied from 1 to 17 as listed in Table 2. Figure 
15 shows samples of  (S3LI)I(S~LI) and (S3L])4(S2LI) 
limit cycles. This type of  limit cycle explains the large 
periods for limit cycles near Ra = 289 000 in Fig. 13. 

This new sequence of  limit cycles leads one to wonder 
whether there exists another sequence between the 
($3L1)~+ 1 (S2L j) and (S3L'y(S2L ~) type limit cycles ; 
none has been found to date. Part of  the reason for 
this may be that time simulations are an inefficient 
means of  finding limit cycles due to the length of  
simulations required. This is only exacerbated by the 
very long periods of  the (S3LJ)~(S2L 1) type limit cycles. 

The transition between S4L ~ and S3L ~ type limit 
cycles was also examined by performing time simu- 
lations around the critical Rayleigh number but no 
(S4LI)~(S3L j) type limit cycle behavior was observed. 
The critical Rayleigh number was resolved to be 
between 276 595 and 276 596, so either no 
(S4LI)~(S3L ~) type limit cycles exist or they occur in 
such a narrow region that we cannot reasonably hope 
to find them with time simulations. Note  that the 
Rayleigh number range for which a S ' L  ~ type limit 
cycle exists decreases as m increases, so one would 
expect the transition from S "+ ~L ~ to SmL ~ limit cycles 
to also occur in a smaller range of  Rayleigh numbers 
for larger values of  m. 

As shown in Fig, 16, the mean heat transfer through 
the enclosure is less for limit cycle solutions than for 
the steady primary solution. In the limit cycle, the 
general features of  the flow oscillate between those 
representative of  the P, SS, and SP steady solutions, 
so it is not  surprising that the average heat transfer in 
the limit cycle is between that of  the various steady 
solutions. Transitions from one type of  limit cycle to 
another are evident in the heat transfer rate for Ray- 
leigh numbers near 276 000 and 290 000. Recall that 
for a Rayleigh number near the transition value, the 
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limit cycle comes very close to the steady solution on 
branch SP (see Fig. 14) and spends a disproportionate 
amount of time in the vicinity of this steady solution. 
Since the heat transfer rate is low for steady solutions 
on branch SP, the more time the limit cycle spends in 
the vicinity of SP the lower the average heat transfer 
rate. This accounts for the local dips in the heat trans- 
fer rate near Rayleigh numbers of 276 000 and 290 000, 
where the transitions between limit cycle types is well 
resolved. 

4. S U M M A R Y  A N D  D I S C U S S I O N  

The temperature boundary conditions examined in 
this study produced a buoyancy induced flow where 
at sufficiently low Rayleigh numbers the flow exhibits 

a steady 2 × 2 cellular pattern. At a critical Rayleigh 
number a pitchfork bifurcation occurs breaking the 
symmetry of the flow, while a Hopf bifurcation leads 
to oscillatory flows at higher Rayleigh numbers. A 
homoclinic orbit is also suggested to occur producing 
a solution structure with qualitative similarities to that 
seen by Hu and Steen [9] for Rayleigh-Bernard con- 
vection in a tall Hele-Shaw cell. 

Numerical studies often impose symmetry con- 
ditions on the flow domain and/or the boundary con- 
ditions and neglect to consider the effects of small 
asymmetries that would be present in a physical 
device. Since pitchfork bifurcations only occur in sys- 
tems with some degree of symmetry it is not possible to 
find pitchfork bifurcations in physical devices where 
unavoidable asymmetries lead to an unfolding of the 
pitchfork bifurcation. As shown by the present results, 
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Table 1. ~ L  j type limit cycles 

Rayleigh number m 

253 000 206 
254 000 39 
255 000 25 
255 000 21 
256 000 18 
256 500 16 
257 000 14 
257 500 13 
258 000 12 
258 500 11 
259 000 10 
260 000 + 260 500 9 
261 000 ~ 261 500 8 
262 000 --* 263 000 7 
264 000 --* 266 000 6 
266 750 ~ 270 000 5 
270 500 ~ 276 595 4 
276 596 --* 288 600 3 
291 250 --* 300 000 2 
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Fig. 13. Period of S"L ~ type limit cycles as a function of 
Rayleigh number for the asymmetric case. 

a small asymmetry can have major  effects on the flow 
behavior. Critical Rayleigh numbers  at which bifur- 
cations occur and the types of  bifurcations change 
when asymmetry is introduced. New limit cycle 
behavior is also observed as a result of  the differing 
degrees of  instability of  the steady solutions due to 
the introduced asymmetry. 

The approach of  first calculating the steady sol- 
utions and their stability so as to help interpret the 
subsequent time simulations was shown to be very 
effective. Unstable  steady solutions were found to 
affect the characteristics of  the limit cycle solutions 
and knowledge of  the steady solutions benefited our 
interpretat ion of  the flow physics, Cont inuat ion tech- 
niques are very useful in that  stable and unstable sol- 
utions are determined, unlike time simulations which 
only produce steady solutions. Ideally one would also 
like to determine the limit cycle solutions as a function 
of  the system parameters  with a cont inuat ion tech- 
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Fig. 14. Time simulation for asymmetric case with (a) 
Ra = 270 000, SSL ~ limit cycle; (b) Ra = 270 500, S4L a limit 

cycle. ~---SP steady solution. 

Table 2. (S~Lt)~(S:L ~) type limit cycles 

Rayleigh number i 

288650 17 
288 700 10 
288725 9 
288750 8 
288775 7 
288 800 6 
288875 5 
288 900 ---, 289 000 4 
289 100 3 
289 250 ~ 289 500 2 
289 700 ~ 291 200 1 

nique, as done by Hu and Steen [9], but  the com- 
putat ional  requirements for this are beyond our cur- 
rent resources. The question of  whether  a low 
dimensional dynamical system can model  the complex 
dynamics of  this flow is also an intriguing issue for 
future study. 
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